⇒sin−1∫xdx−∫[dsin−1xdx∫xdx]dx⇒x22sin−1x−∫1√1−x2⋅x22dx⇒x22sin−1x−12∫x2−1+1√1−x2dx⇒x22sin−1x+12∫1−x2√1−x2dx−12∫1√1−x2dx⇒x22sin−1x+12∫√1−x2dx−12∫1√1−x2dx⇒x22sin−1x+12[12x√1−x2+12sin−1x]−12sin−1x+C⇒x22sin−1x+x4√1−x2+14sin−1x−12sin−1x+C⇒x22sin−1x+x4√1−x2−sin−1x4+C