dydx=tan(x+y)
dydx=sin(x+y)cos(x+y)
Let x+y=v
1+dydx=dvdx
⇒dvdx−1=sinvcosv
⇒dv=sinv+cosvcosvdx
⇒cosvsinv+cosvdv=dx
=12∫(cosv+sinv)sinv+cosv+(cosv−sinv)sinv+cosvdv=∫dx
=12∫dv+12∫cosv−sinvsinv+cosvdv=∫dx
=12v+12log|sinv+cosv|=x+c
=12(x+y)+12log|sin(x+y)+cos(x+y)|=x+c
=y−x+log|sin(x+y)+cos(x+y)|=c.