wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve :- dydx=tan(x+y)

Open in App
Solution

dydx=tan(x+y)
dydx=sin(x+y)cos(x+y)
Let x+y=v
1+dydx=dvdx
dvdx1=sinvcosv
dv=sinv+cosvcosvdx
cosvsinv+cosvdv=dx
=12(cosv+sinv)sinv+cosv+(cosvsinv)sinv+cosvdv=dx
=12dv+12cosvsinvsinv+cosvdv=dx
=12v+12log|sinv+cosv|=x+c
=12(x+y)+12log|sin(x+y)+cos(x+y)|=x+c
=yx+log|sin(x+y)+cos(x+y)|=c.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon