Solve for x:
2(x2+ 1/x2) – 9(x + 1/x) + 14 = 0
x2 + 1/x2= (x + 1/x)2 – 2 [Using (a+b)2 formula]
2[(x + 1/x)2– 2 ] – 9(x + 1/x) + 14 = 0
Let x + 1/x = y
Therefore 2[y2– 2] – 9y + 14 = 0
2y2– 4 – 9y +14 = 0
2y2– 9y +10 = 0
(y – 2)(2y – 5)= 0
y = 2 or y = 5/2
When x + 1/x = 2
x2– 2x + 1 = 0
(x – 1)2= 0
x = 1
When x + 1/x = 5/2
2x2– 5x + 2 = 0
x= 2 or x = 1/2
Therefore x = 1/2 , 1, 2