Consider the given equation 2x2+6√3x−60=0
⇒ x2+3√3x−30=0
Comparing equation (i) by ax2+bx+c=0
We get a=1, b= 3√3, c=−30
By quadratic formula
x=−b±√b2−4ax2a
x=−3√3±√27+1202
x=−3√3±√1472
x=−3√3±7√32
x=−3√3+7√32 or −3√3−7√32
x=4√32 or −10√32
x=2√3 or −5√3
Hence value for x=2√3 or −5√3