Solve for x : 3(81)x+3=9x+1+9x.
±12
We have
3(81)x+3=9x+1+9x
⇒3(92)x+3=9x∗9+9x
⇒3(92)x+3=9x(9+1)
⇒3(92)x+3=9x(10)
⇒3(9x)2+3=9x(10)
Let 9x=t, then we have
3t2−10t+3=0
⇒3t2−9t−t+3=0
⇒3t(t−3)−1(t−3)=0
⇒(3t−1)(t−3)=0
⇒t=13,t=3
⇒9x=13,3
⇒32x=3−1,31
or 2x=−1,2x=1
⇒x=−12,12