The given quadratic equation is 4x2−4ax+(a2−b2)=0
We have 4x2−4ax+(a+b)(a−b)=0
⇒4x2+[−2a−2a+2b−2b]x+(a−b)(a+b)=0 [∵ We can write −4a=[−2a−2a+2b−2b]]
⇒4x2+(2b−2a)x−(2a+2b)x+(a−b)(a+b)=0
⇒4x2+2(b−a)x−2(a+b)x+(a−b)(a+b)=0
⇒2x[2x−(a−b)]−(a+b)[2x−(a−b)]=0
⇒[2x−(a−b)][2x−(a+b)]=0
⇒2x−(a−b)=0,2x−(a+b)=0
⇒x=a+b2,a−b2.