Solve for xandy
ax+by=a-b;bx-ay=a+b
Step 1:Simplification to make the 'y' co-efficient as same
Given,
ax+by=a-b..........................................(1)bx-ay=a+b...........................................(2)equation(1)×a⇒a2x+aby=a2-ab...................................(3)equation(2)×b⇒b2x-aby=ab+b2...................................(4)
Step 2: Applying Elimination Method to find the value of x
Equation(3)+(4)⇒a2x+b2x=a2+b2⇒a2x+b2x=a2+b2⇒x(a2+b2)=a2+b2⇒x=a2+b2a2+b2⇒x=1
Step 3:Find the value of y by substitution method
Substitutex=1inequation(1)⇒a+by=a-b⇒by=a-b-a⇒by=-b⇒y=-bb⇒y=-1
Therefore the values of x=1andy=-1
Solve the following system of linear equations for xandy
x+y=a-b;ax-by=a2+b2
Solve the following system of equations using the cross multiplication method.
ax+by=a-bbx-ay=a+b