Solve for xandy
x+y=2xy;x-y=xy
Step 1:Simplification
Given,
x+y=2xy...................................(1)x-y=xy.....................................(2)
Dividing equation (1)÷xyand(2)÷xy
1÷xy⇒x+yxy=2xyxy⇒xxy+yxy=2⇒1y+1x=2.........................................(3)2÷xy⇒x-yxy=xyxy⇒xxy-yxy=1⇒1y-1x=1.....................................(4)
Step 2:Giving Substitution
Let1x=A&1y=B3⇒B+A=2..............................(5)4⇒B -A=1................................(6)
Step 3:Find A and B using elimination method
(3)+(4)⇒2B=3⇒B=32(1)⇒A=2-3=2-32=4-32=12
Step 4 : To find x and y
A=1x⇒12=1x⇒x=2B=1y⇒1y=32⇒y=23
Therefore the values of x=2andy=23
* Another method
Step 1
1+2⇒2x=3xy⇒y=2x3x=23
Step 2 :To find x
1⇒x+23=2x×23⇒x+23=43x⇒3x+2=4x⇒4x-3x=2⇒x=2Thereforex=2andy=23
x-yxy=9;x+yxy=5
Solve the following systems of the equation:
X+Y=2XY, X-Y/XY=6
x+y-1x-y+1=7;y-x+1x-y+1=35
13x+y-56x-y=21;11x+y-23x-y=1427