The correct option is B 4/13 and 9/13
Let √x1−x=y
⇒y+1y=136⇒y2+1y=136
⇒y2+1=136y⇒y2−136y+1=0
⇒y2−2.132.6y+1=0
⇒y2−2.y.(1312)+1=0
⇒y2−2.y.(1312)+(1312)2=−1+(1312)2=−1+169144
⇒(y−1312)2=±√25144
⇒y−1312=±512
⇒y=1312±512
⇒y=1312+512 or ⇒y=1312−512
⇒y=1812 or y=812
Take y =32
⇒(√x1−x)2=(23)2
⇒x1−x=49
⇒9x=4−4x
⇒9x+4x=4
⇒13x=4
x=413
Now Take y =23
⇒(√x1−x)2=(32)2
⇒x1−x=94
⇒4x=9−9x
⇒4x+9x=9
⇒13x=9
x=913
⇒x=413 or 913
So, b is the correct option.