We have
tan−1(x−1)+tan−1x+tan−1(x+1)=tan−1 3x ...............(1)
⇒tan−1(x−1)+tan−1(x+1)+tan−1x=tan−1 3x
[ Using tan−1A+tan−1B=tan−1((A)+(B)1−(A)(B))]
⇒tan−1((x−1)+(x+1)1−(x−1)(x+1)−)+tan−1x=tan−1 3x
⇒tan−1(2x1−x2+1)+tan−1x=tan−1 3x
⇒tan−1(2x2−x2)+tan−1x=tan−1 3x
⇒tan−1(2x2−x2+x1−2x2−x2×x)=tan−13x
⇒tan−1(2x+2x−x32−x2−2x2)=tan−13x
⇒tan−1[4x−x32−3x2]=tan−13x
⇒4x−x32−3x2=3x
⇒4x−x3=6x−9x3
⇒8x3−2x=0
⇒2x(4x2−1)=0
⇒x=0 or 4x2−1=0
⇒x=0 or 4x2=1
⇒x=0 or x2=14
⇒x=0 or x=±12
⇒x=0,x=12,x=−12