The correct option is C x∈[−12,−10)
Given: [x]2=−23[x]−132
⇒[x]2+23[x]+132=0
Let [x]=t
⇒t2+23t+132=0
⇒t2+11t+12t+132=0
⇒t(t+11)+12(t+11)=0
⇒(t+11)(t+12)=0
Either t=−11 or t=−12
For t=−11,
[x]=−11
Apply [x]≤x<[x]+1
∴−11≤x<−11+1
⇒−11≤x<−10
⇒x∈[−11,−10)
For t=−12,
[x]=−12
Apply [x]≤x<[x]+1
∴−12≤x<−12+1
⇒−12≤x<−11
⇒x∈[−12,−11)
Hence, x∈[−11,−10)∪[−12,−11)
⇒x∈[−12,−10)