Solve 2|x−3|>5, xϵR
Clearly, x−3≠0 and therefore, x≠3.
We have, 2|x−3|>5
Since |x−3| is positive, we may multiply both sides of (i) by |x-3|
This gives
2>5|x−3|
⇔25>|x−3|
⇔|x−3|<25
⇔−25<X−3<25 [∵|x|<a⇔−a<x<a]
⇔−25<x−3 and x−3<25
⇔−25+3<x and x<25+3
⇔135<x and x<175
⇔135<x<175
Also, as shown above, x≠3.
∴ solution set = {xϵR:135<x<175}−[3]
=(2.6,3.4)−{3}=(2.6,3)∪(3,3.4)