dydx+2ytanx=sinx
This is in the form of dydx+py=θ
where p=2tanx,θ=sinx
∴ finding If e∫pdx
=e∫2tanxdx
=e2logsecx
=elogsec2x
=sec2x
y(If)=∫(Q×IF)dx+c (c : const of integration)
y(sec2x)=∫sinxsec2xdx+c
ysec2x=∫sinxcosx.1cosxdx+c
=∫tanxsecxdx+c
=secx+c
ddx(secx)
=tansecxdx vice -versa is also true
or y=cosx+ccos2x