wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: dydx+2ytanx=sinx.

Open in App
Solution

dydx+2ytanx=sinx
This is in the form of dydx+py=θ
where p=2tanx,θ=sinx
finding If epdx
=e2tanxdx
=e2logsecx
=elogsec2x
=sec2x
y(If)=(Q×IF)dx+c (c : const of integration)
y(sec2x)=sinxsec2xdx+c
ysec2x=sinxcosx.1cosxdx+c
=tanxsecxdx+c
=secx+c
ddx(secx)
=tansecxdx vice -versa is also true
or y=cosx+ccos2x

1115870_1139849_ans_ce68834e797f4b9ba097e8a2d0f5afd8.jpeg

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon