Solve:
(i)25 + 22 + 19 + 16 + ... + x = 115
(ii) 1 + 4 + 7 + 10 + ... + x = 590
(i) 25 + 22 + 19 + 16 + ... + x = 115
Here, a = 25, d = -3, Sn=115
We know:
Sn=n2[2a+(n−1)d]⇒115=n2[2×25+(n−1)×(−3)]⇒115×2=n[50−3n+3]⇒230=n(53−3n)⇒230=53n−3n2⇒3n2−53n+230=0
By quadratic formula:
n=−b±√b2−4ac2a
Substituting a = 3, b = -53 and c = 230, we get:
n=53±√(53)2−4×3×2302×3=466,10⇒n=10, as n≠466∴an=a+(n−1)d⇒x=25+(10−1)(−3)⇒x=25−27=−2
(ii) 1 + 4 + 7 + 10 + .... + x = 590
Here, a = 1, d = 3
We know:
Sn=n2[2a+(n−1)d]⇒590=n2[2×1+(n−1)×(3)]⇒590×2=n[2+3n−3]⇒1180=n(3n−1)⇒1180=3n2−n⇒3n2−n−1180=0
By quadratic formula:
n=−b±√b2−4ac2a
Substituting a = 3, b = -1 and c = - 1180, we get:
⇒n=1±√(1)2+4×3×11802×3=−1186,20⇒n=20, as n≠−1186∴an=x=a+(n−1)d⇒x=1+(20−1)(3)⇒x=1+60−3=58