I=∫dx√3x+4−√3x+1t=1√3x+4−√3x+11t=√3x+4−√3x+1
t=√3x+4+√3x+1(3x+4−3x−1)
t=13(√3x+4+√3x+1)
⇒3t+1t=2√3x+4
⇒[12[3t+14]]2=3x+4
14×2(3t+1t)×(3−1t2)dt=3dx
dx=16(3t2+1t)(3t2−1t2)dt
dx=16(9t2−1t3)dt
I=∫t×16(9t4−1)t3dt
=∫16(9t4−1)t2dt
=16∫9t2dt=16∫1t2dt
=32t33−16t2+1(−2+1)+c
=I=t32+16t+c
=I=22√3x+4−√3x+13+16(√3x+4−√3x+1)+6