I=∫n0x dx1+sin2x
=∫n0xcos2x/(1−sinx)
=∫xcos2x−xsinxcos2sdx
I1=2.=∫x1+cos2x
2=∫12xtanx−∫12tan dx
xtanx−(−ln|cosx|)
I2=∫xsinxcos2xdx
=xsinxtanx−∫(sinx+xcosx)tanx dx
∫tanxsinxdx+∫xtanxcosdx
⇒ (ln|tanx+secx|−sinx)−(xcosx+sinx)
xtanx+ln|cosx|−(xsinxtanx+xcosx−ln|tanx+secx|)
⇒ tanx+ln|cosx|−xsinxtanx−xcosx+ln(tanx+secx)+C
⇒ =limx+0→0
=limx+n⇒ π
∴ π−0 , I=π