wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: I=πoxdx1+sinx

Open in App
Solution

I=n0x dx1+sin2x
=n0xcos2x/(1sinx)
=xcos2xxsinxcos2sdx
I1=2.=x1+cos2x
2=12xtanx12tan dx
xtanx(ln|cosx|)
I2=xsinxcos2xdx
=xsinxtanx(sinx+xcosx)tanx dx
tanxsinxdx+xtanxcosdx
(ln|tanx+secx|sinx)(xcosx+sinx)
xtanx+ln|cosx|(xsinxtanx+xcosxln|tanx+secx|)
tanx+ln|cosx|xsinxtanxxcosx+ln(tanx+secx)+C
=limx+00
=limx+n π
π0 , I=π


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon