Solve in positive integers:
7x+12y=152.
7x+12y=152 .....(i)
⇒x+12y7=1527⇒x+y+5y7=21+57⇒x+y+5y−57=21
We are solving for positive integers, so x and y both the integers
⇒5y−57= integer
Multiplying by 3, we get
15y−157= integer
⇒2y−2+y−17= integer
⇒y−17= integer
Let the integer be p
y−17=p⇒y=7p+1 .....(ii)
Substituting y in (i)
7x+12(7p+1)=152⇒7x=84p−140⇒x=20−12p
From (ii) we see that y<0 for p<0 and from (iii) we see that x<0 for p>1.
So the values of p can be 0,1
Substituing p in (ii)
⇒y=1,8
Substituing p in (iii)
⇒x=20,8
So the complete solution set of positive integers is
{x=20,8y=1,8