wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
π/201+2cosx(2+cosx)2dx

Open in App
Solution

I=π/201+2cosx(2+cosx)2dx=π/202(cosx+2)3(2+cosx)2dx
=π/20xcosx+2dx3π/20dx(2+cosx)2dx
I1=π/202cosx+2dx=π/2021+tan2x21+tan2x2=π/202sec2x2dxtan2x2+3
Let u=tan(x)2du=12sec2x2dx
When x=0,u=0 & x=π2,u=1
I1=104du42+3=4310du(u3)2+1=43[tan143]10=43(π6)=2π33 ............ (1)
I2=3π/20dx(cotx+2)2=3π/20dx∣ ∣ ∣1tan2x21+tan2x2+2∣ ∣ ∣2
=3π/20(1+tan2x2)sec2x2(tan2x2+3)2
Let V=tanx2dv=12sec2x2dx
when x=0,v=0 & x=π2,v=1
I2=3101+v2(3+v2)22dv=610(v2+3)2(v2+3)2dv
=6[10dvv2+3102(v2+3)2dv]
6[33tan1v3]10+1210dv(v2+3)2
=633(π6)+I3
=π3+I3 .............. (2)
I3=1210dv(v2+3)2
Let v=3tanθdv=3sec2θdθ
when v=0,θ=0 & v=1,θ=π6
I3=12π/603sec2θdθ9(tan2θ+1)2=43π/60cos2θdθ
=43π/60(1+cos2θ2)dθ
=23[θ+sin2θ2]π/60
=23(π6+34) ............ (3)
I2=π3+23(π6)+12=2π33+12 ........ (4)
from (1),(4) I=I1+I2=2π33+(122π33)
I=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon