I=∫π/201+2cosx(2+cosx)2dx=∫π/202(cosx+2)−3(2+cosx)2dx
=∫π/20xcosx+2dx−3∫π/20dx(2+cosx)2dx
I1=∫π/202cosx+2dx=∫π/2021+tan2x21+tan2x2=∫π/202sec2x2dxtan2x2+3
Let u=tan(x)2⇒du=12sec2x2dx
When x=0,u=0 & x=π2,u=1
I1=∫104du42+3=43∫10du(u√3)2+1=4√3[tan−14√3]10=4√3(π6)=2π3√3 ............ (1)
I2=−3∫π/20dx(cotx+2)2=−3∫π/20dx∣∣
∣
∣∣1−tan2x21+tan2x2+2∣∣
∣
∣∣2
=−3∫π/20(1+tan2x2)sec2x2(tan2x2+3)2
Let V=tanx2⇒dv=12sec2x2dx
when x=0,v=0 & x=π2,v=1
I2=−3∫101+v2(3+v2)22dv=−6∫10(v2+3)−2(v2+3)2dv
=−6[∫10dvv2+3−∫102(v2+3)2dv]
−6[√33tan−1v√3]10+12∫10dv(v2+3)2
=−6√33(π6)+I3
=−π√3+I3 .............. (2)
I3=12∫10dv(v2+3)2
Let v=√3tanθ⇒dv=√3sec2θdθ
when v=0,θ=0 & v=1,θ=π6
I3=12∫π/60√3sec2θdθ9(tan2θ+1)2=4√3∫π/60cos2θdθ
=4√3∫π/60(1+cos2θ2)dθ
=2√3[θ+sin2θ2]π/60
=2√3(π6+√34) ............ (3)
I2=π√3+2√3(π6)+12=−2π3√3+12 ........ (4)
from (1),(4) I=I1+I2=2π3√3+(12−2π3√3)
I=12