wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve
π/20logsinxdx

Open in App
Solution

I=π20logsindx(1)a0f(x)dx=a0f(ax)dxI=π20logcosxdx(2)addingequation(1)and(2)2I=π20log(sinx.cosx)dx=π20log(sin2x2)dx2I=π20log(sin2x)dxπ20log2dx2I=π20log(sin2x)dxπ2log2letI1=π20log(sin2x)dxLett=2xI1=12π20logsintdt=π20logsintdt=I2I=Iπ2log2I=π2log2

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon