I=∫π20logsindx→(1)∫a0f(x)dx=∫a0f(a−x)dx⇒I=∫π20logcosxdx→(2)addingequation(1)and(2)⇒2I=∫π20log(sinx.cosx)dx=∫π20log(sin2x2)dx⇒2I=∫π20log(sin2x)dx−∫π20log2dx⇒2I=∫π20log(sin2x)dx−π2log2letI1=∫π20log(sin2x)dxLett=2xI1=12∫π20logsintdt=∫π20logsintdt=I⇒2I=I−π2log2⇒I=−π2log2
Hence, this is the answer.