wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:cos2xcos4xcos6xdx

Open in App
Solution

$Given, cos2xcos4xcos6xdx
We know that,
2cosAcosB=cos(A+B)+cos(AB)cosAcosB=12[cos(A+B)+cos(AB)]
And cos2θ=2cos2θ1cos2θ=12(cos2θ1)
cos2xcos4xcos6xdx=12[cos(2x+4x)+cos(2x4x)]cos6xdx=12[cos6x+cos(2x)]cos6xdx=12[cos6x+cos2x]cos6xdx=12[cos26x+cos2xcos6x]dx=1212[(cos12x+1)+cos8x+cos4x]dx=14[cos12x+cos8x+cos4x+1]dx=14[cos12xdx+cos8xdx+cos4xdx+(1)dx]=14[sin12x12+sin8x8+sin4x4+x]+Ccos2xcos4xcos6xdx=14[sin12x12+sin8x8+sin4x4+x]+C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon