$
Given, ∫cos2xcos4xcos6xdxWe know that,
2cosAcosB=cos(A+B)+cos(A−B)⇒cosAcosB=12[cos(A+B)+cos(A−B)]
And cos2θ=2cos2θ−1⇒cos2θ=12(cos2θ−1)
∴∫cos2xcos4xcos6xdx=∫12[cos(2x+4x)+cos(2x−4x)]cos6xdx=12∫[cos6x+cos(−2x)]cos6xdx=12∫[cos6x+cos2x]cos6xdx=12∫[cos26x+cos2xcos6x]dx=12∫12[(cos12x+1)+cos8x+cos4x]dx=14∫[cos12x+cos8x+cos4x+1]dx=14[∫cos12xdx+∫cos8xdx+∫cos4xdx+∫(1)dx]=14[sin12x12+sin8x8+sin4x4+x]+C∴∫cos2xcos4xcos6xdx=14[sin12x12+sin8x8+sin4x4+x]+C.