wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve :1cotx1+cotxdx

Open in App
Solution

Given,1cotx1+cotxdx=(1cosxsinx)(1+cosxsinx)dx=sinxcosxsinxsinx+cosxsinxdx=sinxcosxsinx+cosxdxLetusassume,sinx+cosx=u.differentiatingbothsidesweget,(cosxsinx)dx=du(cosx+sinx)dx=du(cosx+sinx)dx=du(sinxcosx)dx=dunowsubstituingthesevaluesweget,sinxcosxsinx+cosxdx=(duu)=(1u)du=logu=log(sinx+cosx).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon