I=∫dx√1−2exkt1−2ex=p
differentiate both side
−2ex.e.log2dx=dp
⇒dx=−dp(elog2)(2ex)
dx=−dpelog2(1−p)
I=∫dp√P.e.log2(p−1)
⇒=1elog2∫dp√P(p−1)
⇒=1elog2∫dpP2/2−p1/2
let P=t2
dp=2tdt
⇒1elog2∫2tdt(t3−t)
⇒1elog2∫2tdt(t2−1)
⇒2elog2∫dt(t+1)(t+1)
⇒2elog2[∫121t−1−1t+1]dt
⇒1elog2[∫1(t−1)dt−∫dt(t+1)]
⇒1elog2[log(t−1)−log(t+1)]
⇒1elog2log∣∣∣t−1t+1∣∣∣
⇒1elog2log∣∣∣√p−1√p+1∣∣∣
⇒1elog2log∣∣∣√1−2ex−1√1−2ex+1∣∣∣