Given
∫1x√x2+x+1dx
∫1x2√1+1x+1x2
Put1x=t,than1x2dx=−dt
Now,
∫−1√t2+t+1dt
∫−1√t2+t+14+34
∫−1√(t+12)2+34
⇒−logt+√t2+34+constant
⇒−log(1x+√1x2+34)+constant