I=∫1x(1−x2)dx=∫1x(1−x)(1+x)dx
using parctial fraction, we have
I=∫Ax+B1−x+C1+x
on comparing numerator, we have
In A(1−x)(1+x)+Bx(1+x)+C(1−x)x=1
put x=1,B=1/2 put x=0,A=1
put x=−1,C=−1/2
⇒I=∫(1x+12(1−x)−12(1+x))dx
=lnx−12ln(1−x)+12ln(1+x)
=ln(x√1+x√1−x)