Let,
I=∫dxx4+16=18∫8dxx4+16=18∫8x2x2+16x2dx=18∫(1+4x2)−(1−4x2)x2+16x2=18∫(1+4x2)x2+16x2−8+8dx−18∫(1−4x2)x2+16x2+8−8dx=18∫(1+4x2)(x−4x)2+(2√2)2dx−18∫(1−4x2)(x+4x)2−(2√2)2dxLet, I1=18∫(1+4x2)(x−4x)2+(2√2)2dx
Putting, x−4x=u⇒(1+4x2)dx=du
Now, I1=18∫duu2+(2√2)2=18×12√2tan−1[u2√2]+C1=116√2tan−1[x2−42√2x]+C1
Again, let I2=18∫(1−4x2)(x+4x)2−(2√2)2dx
Putting, x+4x=v⇒(1−4x2)2dx=dv
So, I2=18∫dvv2−(2√2)2=18×14√2log∣∣∣v−2√2v+2√2∣∣∣+C2=132√2log∣∣∣x2+4−2√2xx2+4+2√2x∣∣∣+C2
∴I=∫dxx4+16=(116√2tan−1[x2−42√2x]+C1)−(132√2log∣∣∣x2+4−2√2xx2+4+2√2x∣∣∣+C2)=116√2tan−1[x2−42√2x]−132√2log∣∣∣x2+4−2√2xx2+4+2√2x∣∣∣+C.