wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: dxx4+16

Open in App
Solution

Let, I=dxx4+16=188dxx4+16=188x2x2+16x2dx=18(1+4x2)(14x2)x2+16x2=18(1+4x2)x2+16x28+8dx18(14x2)x2+16x2+88dx=18(1+4x2)(x4x)2+(22)2dx18(14x2)(x+4x)2(22)2dx
Let, I1=18(1+4x2)(x4x)2+(22)2dx
Putting, x4x=u(1+4x2)dx=du
Now, I1=18duu2+(22)2=18×122tan1[u22]+C1=1162tan1[x2422x]+C1
Again, let I2=18(14x2)(x+4x)2(22)2dx
Putting, x+4x=v(14x2)2dx=dv
So, I2=18dvv2(22)2=18×142logv22v+22+C2=1322logx2+422xx2+4+22x+C2
I=dxx4+16=(1162tan1[x2422x]+C1)(1322logx2+422xx2+4+22x+C2)=1162tan1[x2422x]1322logx2+422xx2+4+22x+C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon