I=∫dxx2√x2−1=∫dxx2√x2−yx2
Let 12=t
=⇒1x2dx=−dt
=∴I=−∫dt√1t2−t2=−∫dt√1−t2t2
==−∫tdt√1−t4
Let t2=u
=⇒tdt=12du
=∴I=−12∫du√1−u2
={∵∫11−x2dx−sin−1x+e}
−12sin−1(u)+c
={∵sin−1x+cos−1x=x2}
=−12(x2−cos−1)+c
=12cos−1(x)+c′
=12cos−1(t2)+c′ {∵cos−1(1x)−sec−1x}
=12cos−1(1x2)+c′
I=12sec−1(x2)+c′