wehaveI=∫sinxsinx−cosxdxmultiplingthenumeratoranddenominatorbysinx+cosxweget=∫sinx(sinx+cosx)(sinx−cosx)(sinx+cosx)dx=∫sin2x+sinxcosxsin2x−cos2xdx=∫sin2xsin2x−cos2xdx+∫sinxcosxsin2x−cos2xdxusingcos2x−sin2x=cos2x,sin2x=2sinxcosxandsin2x=1−cos2x2weget=−∫1−cos2x2cos2xdx−∫sin2x2cos2xdx=−∫sec2x2dx+∫12dx−∫tan2x2dxusing∫tanxdx=log|secx|+c.,∫secxdx=log|secx+tanx|+Cand,∫dx=x+Cwegetlog|sec2x+tan2x|4+x2−logs|ec2x|4+C.