Given the integral,
∫x6−2x4+3x3−9x2+4x5−5x3+4xdx
Applying polynomial long division,
=∫(3x4+3x3−13x2+4x5−5x3+4x+x)dx=∫3x4+3x3−13x2+4x5−5x3+4xdx+∫xdx
For,
∫3x4+3x3−13x2+4x5−5x3+4xdx
Applying factorisation of the denominator we get,
=∫3x4+3x3−13x2+4(x−2)(x−1)x(x+1)(x+2)dx
Again using partial fraction,
=∫(−1x+2+32(x+1)+1x+12(x−1)+1x−2)dx=−∫1x+2dx+32∫1x+1dx+∫1xdx+12∫1x−1dx+∫1x−2dx=−ln(x+2)+3ln(x+1)2+ln(x)+ln(x−1)2+ln(x−2)
And ∫xdx=x22
∴∫3x4+3x3−13x2+4x5−5x3+4xdx+∫xdx=−ln(x+2)+3ln(x+1)2+ln(x)+ln(x−1)2+ln(x−2)+x22
Hence,
∫x6−2x4+3x3−9x2+4x5−5x3+4xdx=−ln(|x+2|)+3ln(|x+1|)2+ln(|x|)+ln(|x−1|)2+ln(|x−2|)+x22+C.