wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve : x62x4+3x39x2+4x55x3+4xdx.

Open in App
Solution

Given the integral,
x62x4+3x39x2+4x55x3+4xdx
Applying polynomial long division,
=(3x4+3x313x2+4x55x3+4x+x)dx=3x4+3x313x2+4x55x3+4xdx+xdx
For,
3x4+3x313x2+4x55x3+4xdx
Applying factorisation of the denominator we get,
=3x4+3x313x2+4(x2)(x1)x(x+1)(x+2)dx
Again using partial fraction,
=(1x+2+32(x+1)+1x+12(x1)+1x2)dx=1x+2dx+321x+1dx+1xdx+121x1dx+1x2dx=ln(x+2)+3ln(x+1)2+ln(x)+ln(x1)2+ln(x2)
And xdx=x22
3x4+3x313x2+4x55x3+4xdx+xdx=ln(x+2)+3ln(x+1)2+ln(x)+ln(x1)2+ln(x2)+x22
Hence,
x62x4+3x39x2+4x55x3+4xdx=ln(|x+2|)+3ln(|x+1|)2+ln(|x|)+ln(|x1|)2+ln(|x2|)+x22+C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Remainder Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon