We have
∫π3−π3x3cosxsin2xdx
I=∫π3−π3x3cscxcotxdx
I=x3∫π3−π3cscxcotxdx−∫π3−π3(dx3dxcscxcotxdx)dx
I=x3(−cscx)−π3π3−∫π3−π34x3(−cscx)dx
I=x3(−cscx)−π3π3+4⎡⎢⎣x3∫π3−π3(cscx)dx−∫π3−π3⎛⎜⎝dx3dx∫π3−π3(cscx)dx⎞⎟⎠dx⎤⎥⎦+C
I=−x3(cscπ3+cscπ3)+x3(−ln(cscx+cotx))−π3π3−12∫π3−π3x2(−ln(cscx+cotx))−π3π3dx
I=−−−−−−−−−−−−−−−−−
soon.
Hence, this is the answer.