Given ∫(x−1x+1)4dx
∫(x+1−2x+1)4
∫(1−2x+1)4dx
∫(1−2x+1)2(1−2x+1)2dx
∫(1+4(x+1)2−4x+1)(1+4(x+1)2−4x+1)dx
∫1+4(x+1)2−4(x+1)+4(x+1)2+16(x+1)4−16(x+1)3−4(x+1)−16(x+1)3+16(x+1)2dx
∫1+8+16(x+1)2−8x+1+16(x+1)4−32(x+1)3dx
∫(1+24(x+1)−2−8(x+1)−1+16(x+1)−4−32(x+1)−3)dx=x+24(x+1)(−2+1)−8log(x+1)−163(x+1)3+322(x+1)3
=x−24x+1−8log(x+1)−163(x+1)3+16(x+1)2+c.
Hence, the answer is x−24x+1−8log(x+1)−163(x+1)3+16(x+1)2+c.