I=∫π/20logsinxdx
⇒I=∫π/20logcosxdx
⇒2I=∫π/20log(sinxcosx)dx
=∫π/20log(2sinxcosx2)dx=∫π/20log(sin2x2)dx
=∫π/20logsin2xdx−∫π/20log2dx−−−−−I1
I1→ let 2x=t⇒dx=dt2 , x=0x=π/2
t=0t=π
I1=∫π/20logsint.dt2=12∫π/20logsintdt
As we know sin(π−x)sinx
I1=12.2∫π/20logsintdt=∫π/20logsinxdx
2I=∫π/20logsinxdx−π2log2
⇒2I=I−π2log2
⇒I=−π2log2
⇒I=−π2log2
⇒∫π/20logsinxdx=−π2log2.