Simplifying π4∫0tan4xdx
π4∫0tan4xdx=π4∫0tan2x×tan2xdx
=π4∫0tan2x(sec2x−1)dx
=π4∫0(tan2xsec2x−tan2x)dx
=π4∫0tan2xsec2xdx−π4∫0tan2xdx
=I1+I2
I1=π4∫0tan2xsec2xdx
Put tanx=t, then, sec2xdx=dt
I1=π4∫0t2dt
=[t33]π40
=[tan3x3]π40
=13(tan3π4−tan3(0))
=13(1−0)
=13
I2=π4∫0tan2xdx
=π4∫0(sec2x−1)dx
=[tanx−x]π40
=tanπ4−π4−tan(0)+0
=1−π4
Now,
π4∫0tan4xdx=13+1−π4
=4+12−3π12
=16−3π12