wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:(sin2xcos2x)dx

Open in App
Solution

We know that,
sin2θ=2sinθcosθsinθcosθ=12(sin2θ)
and sin2θ=2sinθcosθsinθcosθ=12(sin2θ)
sin2xcos2xdx=(sinxcosx)2dx=(12sin2x)2dx=14(sin22x)dx=1412[1cos(22x)]dx=18(1cos4x)dx=18[(1)dxcos4xdx]=18(x14sin4x)+C=x8sin4x32+Csin2xcos2xdx=x8sin4x32+C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon