We know that,
sin2θ=2sinθcosθ⇒sinθcosθ=12(sin2θ)
and sin2θ=2sinθcosθ⇒sinθcosθ=12(sin2θ)
∴∫sin2xcos2xdx=∫(sinxcosx)2dx=∫(12sin2x)2dx=14∫(sin22x)dx=14∫12[1−cos(2⋅2x)]dx=18∫(1−cos4x)dx=18[∫(1)dx−∫cos4xdx]=18(x−14sin4x)+C=x8−sin4x32+C∴∫sin2xcos2xdx=x8−sin4x32+C.