∫sinxsin2xsin3xdx
12∫(2sinxsin2x)sin3x dx
We have multiplying and dividing by 2 to get it in addition form
12∫[cos(2x−x)−cos(2x+x)]sin3x dx
=12∫(sin3xcosx−sin3xcos3x)dx
=14∫(2sin3xcosx−2sin3xcos3x)dx
=14∫(sin4x+sin2x−sin6x)
=14[−cos4x4−cos2x2+cos6x6]+C