|x2+4x+3|+2x+5=0
|(x+3)(x+1)|↓+2x+5=0+−+−1−3
→ for
x∈(−1,−3)
−(x2+4x+3)+2x+5=0
x2+4x+3−2x−5=0
x2+2x−2=0
x=−2±√4+82
→ for
x∈(−∞, −3)∪[−1,∞]
x2+4x+3+2x+5=0
x2+6x+8=0
(x+4)(x+2)=0
x=−4, x=−2
do not Lie
(=∞, −3)∪[−1, −∞]
So,
x=(−4) or (−1−√3)