We have,
log5x+logx5=52
⇒ log5x+1log5x=52∴ logax=1logxa
let log5x=y
then,
y+1y=52
⇒ y2+1=52y
⇒ 2y2+2=5y
⇒ 2y2+2−5y=0
⇒ 2y2−5y+2=0
⇒ 2y2−4y−y+2=0
⇒ 2y(y−2)−1(y−2)=0
⇒ (y−2)(2y−1)=0
⇒y−2=0,2y−1=0
⇒y=2,y=12
Now taking
log5x=y
log5x=2
x=52
x=25
log5x=y
log5xx=12
x=512
x=√5
Hence, this is the answer.