sin−1(dydx)=x+y
dydx=sin(x+y)
Let x+y=v. Then,
1+dydx=dvdx
dydx=dvdx−1
Therefore,
dvdx−1=sinv
dvdx=1+sinv
dv1+sinv=dx
∫11+sinv=∫dx
∫dx=∫1−sinv1−sin2vdv
∫dx=∫1−sinvcos2vdv
∫dx=∫(sec2v−tanvsecv)dv
x=tanv−secv+C
x=tan(x+y)−sec(x+y)+C, which is the required solution.