wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve :
sin1(dydx)=x+y

Open in App
Solution

sin1(dydx)=x+y

dydx=sin(x+y)

Let x+y=v. Then,
1+dydx=dvdx

dydx=dvdx1

Therefore,
dvdx1=sinv

dvdx=1+sinv

dv1+sinv=dx

11+sinv=dx

dx=1sinv1sin2vdv

dx=1sinvcos2vdv

dx=(sec2vtanvsecv)dv

x=tanvsecv+C
x=tan(x+y)sec(x+y)+C, which is the required solution.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon