We know that,
sin(α+β)=sinαcosβ+cosαsinβ
cos(2α)=cos2α−sin2α=2cos2α−1=1−2sin2α
then,
L.H.S=sin(3x)=sin(2x+x)=sin(2x)cosx+cos(2x)sinx=
=(2sinx.cosx.).cosx+(1−2sin2x)sinx
=2sinx.cos2x+sinx−2sin3x=2sinx(1−sin2x)+sinx−2sin3x=2sinx−2sin3x+sinx−2sin3x
=3sinx−4sin3x
R.H.S proved