√1+x2√1+y2dx=−xydy∫(√1+x2x)dx=∫(−y√1+y2)dylet1+x2=t2orx2=(t2−1)2xdx=2tdtordx=(tdtx)and1+y2=z22ydy=2zdzydy=zdz∴∫(tx)(tdtx)=−∫(zdzz)∫(t2t2−1)dt=−z+C∫dt+∫(1t2−1)dt=−z+Ct+(12)log∣∣(t−1t+1)∣∣=−z+C√1+x2+(12)log∣∣∣(√1+x2−1√1+x2+1)∣∣∣=−√1+y2+C