According to question,
√2+√2+2cos4θ=2cosθ
squaring on both sides,
=> 2+√2+2cos4θ=4cos2θ
=> √2+2cos4θ=4cos2θ−2
=> √2+2cos4θ=2(2cos2θ−1)
=> √2+2cos4θ=2(cos2θ)
Again squaring,
=> 2+2cos4θ=4(cos22θ)
=> 2cos4θ=4(cos22θ)−2
=> 2cos4θ=2(2cos22θ−1)
=> 2cos4θ=2(cos4θ)
=> LHS=RHS
Hence proved