Solve : √3cos x−sin x=1.
Given: √3cosx−sinx=1.....(i)
Dividing both sides of (i)by √(√3)2+(−1)2, i.e., by 2, we get
√32cosx−12sinx=12
⇒cosxcosπ6−sinxsinπ6=12
⇒cos(x+π6)=cosπ3[∵12=cosπ3]
⇒(x+π6)=2nπ±π3, where n∈I[∵cosθ=cosα⇒θ=2nπ±α]
⇒(x+π6)=(2nπ+π3) or (x+π6)=(2nπ−π3).
x=(2nπ+π6) or x=(2nπ−π2), where n∈I.
Hence, the general solution is x=(2nπ+π6) or x=(2nπ−π6), where n∈I.