Solve √4ab−2(a2−b2)i
Consider the equation ,√4ab−2(a2+b2).i
√4ab−2(a2+b2).i=√4abi−2(a2+b2).i
=√(4ab−2a2−2b2).i
=√−2(2ab−a2−b2).i
=√−2(a−b)2.i
=√2(a−b)i√−1
∵√−1=i
=√2(a−b)i.i
=√2(a−b)i2
=√2(a−b)(−1)
=−√2(a−b)
If (a2+b2)=11+b+ia(1+b−ia)
If A,B,C are angles of a triangle, then the value of ∣∣ ∣ ∣∣e−2iAeiCeiBeiCe−2iBeiAeiBeiAe−2iC∣∣ ∣ ∣∣ is