⇒√x+√1−x=1−√x
Squaring both sides, we get
⇒x+√1−x=1+x−2√x
⇒√1−x=1−2√x
Squaring on both sides, we get
⇒1−x=1+4x−4√x
⇒−5x=−4√x
Squaring both sides, we get
⇒25x2=16x
⇒x(25x−16)=0
∴x=0,1625
For x=0,√x+√x+√1−x=0+√0+√1−0=1
For x=1625,
=√1625+√1625+√1−1625
=45+√1625+√25−1625=45+√1625+√925
=45+√1625+35=45+√16+1525=45+3125≠1
Hence x=0 is the only solution.