Given: √3x2−√2x+3√3=0
Solution of a quadratic equation, ax2+bx+c=0 is given as
x=−b±√b2−4ac2a
On comparing √3x2−√2x+3√3=0 with ax2+bx+c=0
we get, a=√3, b=−√2 and c=3√3
∴ x=−(−√2)±√(−√2)2−4(√3)(3√3)2√3
=√2±√2−362√3
x=√2±√−342√3
x=√2±i√342√3 [∵√−1=i ]
∴ roots are √2+i√342√3 and √2−i√342√3