LHS:
tan−11+tan−12+tan−13
=tan−11+π2−cot−12+π2−cot−13 (∵tan−1x=π2−cot−1x ∀x∈R)
=π+tan−11−tan−112−tan−113 (∵tan−1x=cot−11x ∀x∈R+)
=π+tan−11−tan−1(12+131−12⋅13) (∵tan−1a+tan−1b=tan−1(a+b1−ab) if ab<1)
=π+tan−11−tan−1(5/65/6)
=π+tan−11−tan−11
=π = RHS
Hence, proved.