∣∣
∣∣x+axxxx+axxxx+a∣∣
∣∣=0
Applying R1=R1−R2,R2=R2−R3
∣∣
∣∣a−a00a−axxx+a∣∣
∣∣=0
Taking a common from first and second row respectively
⇒a2∣∣
∣∣1−1001−1xxx+a∣∣
∣∣=0
⇒∣∣
∣∣1−1001−1xxx+a∣∣
∣∣=0,∵a≠0
Now expanding along first row we get,
1(x+a+x)+1(0+x)=0
⇒3x+a=0⇒x=−a3