wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the equation
(ii) tanx+tan2x=tan3x

Open in App
Solution

tanx+tan2x=tan3x

tanx+tan2x=tan3x

tanx+tan2x=tan(2x+x)

Using tan(A+B)=tanA+tanB1tanAtanB

tanx+tan2x=[tan2x+tanx1tan2xtanx]

tanx+tan2x[tan2x+tanx1tan2xtanx]=0

(tanx+tan2x)(111tan2xtanx)=0

(tanx+tan2x)(tan2xtanx1tan2xtanx)=0

(tanx+tan2x)=0 or (tan2xtanx1tan2xtanx)=0

(tanx+tan2x)=0 or tan2xtanx=0

(tanx+tan2x)=0 or (2tanx1tan2x)tanx=0

(tanx+tan2x)=0 or (2tan2x1tan2x)=0

(tanx+tan2x)=0 or tan2x=0

(tanx+tan2x)=0 or x=nπ

Now,

tan2x=tanx

tan2x=tan(x)

We know the general solution of tanx=tanα is
x=mπ+α,mZ

So,
2x=mπx

3x=mπ

x=mπ3

Hence, the general solution is
x=mπ3 and x=nπ,m,nZ


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon