tanx+tan2x=tan3x
⇒tanx+tan2x=tan3x
⇒tanx+tan2x=tan(2x+x)
Using tan(A+B)=tanA+tanB1−tanAtanB
⇒tanx+tan2x=[tan2x+tanx1−tan2xtanx]
⇒tanx+tan2x−[tan2x+tanx1−tan2xtanx]=0
⇒(tanx+tan2x)(1−11−tan2xtanx)=0
⇒(tanx+tan2x)(−tan2xtanx1−tan2xtanx)=0
⇒(tanx+tan2x)=0 or (−tan2xtanx1−tan2xtanx)=0
⇒(tanx+tan2x)=0 or tan2xtanx=0
⇒(tanx+tan2x)=0 or (2tanx1−tan2x)tanx=0
⇒(tanx+tan2x)=0 or (2tan2x1−tan2x)=0
⇒(tanx+tan2x)=0 or tan2x=0
⇒(tanx+tan2x)=0 or x=nπ
Now,
tan2x=−tanx
⇒tan2x=tan(−x)
We know the general solution of tanx=tanα is
x=mπ+α,m∈Z
So,
2x=mπ−x
⇒3x=mπ
⇒x=mπ3
Hence, the general solution is
x=mπ3 and x=nπ,m,n∈Z