sinx+sin5x=sin3x
⇒(sinx+sin5x)−cos2x=0
Using sinC+sinD=2sin(C+D2)cos(C−D2)
⇒2sin(x+5x2)cos(x−5x2)−sin3x=0
⇒2sin3xcos(−2x)−sin3x=0
⇒2sin3xcos2x−sin3x=0
⇒sin3x(2cos2x−1)=0
⇒sin3x=0 or (2cos2x−1)=0
⇒3x=nπ or cos2x=12
⇒x=nπ3 or cos2x=cosπ3
We know the general solution of x=cosα is x=2mπ±α,m∈Z
So, the general solution of cosx=cosπ3 is
2x=2mπ±π3⇒x=mπ±π6
Hence, the general solution is
x=nπ3 and x=mπ±π6,n,m∈Z