wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the equation
(iii) sinx+sin5x=sin3x

Open in App
Solution

sinx+sin5x=sin3x

(sinx+sin5x)cos2x=0

Using sinC+sinD=2sin(C+D2)cos(CD2)

2sin(x+5x2)cos(x5x2)sin3x=0

2sin3xcos(2x)sin3x=0

2sin3xcos2xsin3x=0

sin3x(2cos2x1)=0

sin3x=0 or (2cos2x1)=0

3x=nπ or cos2x=12

x=nπ3 or cos2x=cosπ3

We know the general solution of x=cosα is x=2mπ±α,mZ

So, the general solution of cosx=cosπ3 is
2x=2mπ±π3x=mπ±π6

Hence, the general solution is
x=nπ3 and x=mπ±π6,n,mZ


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon