Solve the following equations:
x2y2z2u=12,x2y2zu2=8,z2yx2u2=1,3xy2z2u2=4.
Let x2y2z2u=12 .....(i)
and x2y2zu2=8 .........(ii)
Dividing (i) by (ii), we get
x2y2z2ux2y2zu2=128
⇒u=23z ........(1)
z2yx2u2=1 ........(iii)
3xy2z2u2=4 ........(iv)
Dividing (ii) by (iv), we get
x2y2zu23xy2z2u2=84
⇒x=6z .........(2)
Dividing (ii) by (iii), we get
x2y2zu2z2yx2u2=81
⇒y=8z .......(3)
Substituting values of (1), (2) and (3) in (i), we get
(6z)2(8z)2z223z=12
For z7=1128=127
⇒z=12
For x=6z
⇒x=3
For y=8z
⇒y=4
For u=23z
⇒u=13
So, the complete solution is x=3,y=4,z=12,u=13.