Writing the given equation in the matrix form AX=B as⎡⎢⎣311202512⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣102⎤⎥⎦where, A=⎡⎢⎣311202512⎤⎥⎦,X=⎡⎢⎣xyz⎤⎥⎦ and B=⎡⎢⎣102⎤⎥⎦
∴ |A|=∣∣
∣∣311202512∣∣
∣∣=3(0−2)−1(4−10)+1(2−0)=2≠0
∴ A is non-singular
∴ The system has the unique solution X=A−1B
A11=−2,A12=6,A13=2,A21=−1,A22,A23=2,A31=2,A32=−4,A33=−2
∴adjA=⎡⎢⎣A11A21A31A12A22A32A13A23A33⎤⎥⎦=⎡⎢⎣−2−1261−422−2⎤⎥⎦
A−1=adjA|A|=12⎡⎢⎣−2−1261−422−2⎤⎥⎦=⎡⎢⎣−1−1/2131/2−211−1⎤⎥⎦
Now,
AX=B⇒X=A−1B
⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣−1−1/2131/2−211−1⎤⎥⎦⎡⎢⎣102⎤⎥⎦=⎡⎢⎣1−1−1⎤⎥⎦
x=1,y=−1,z=−1